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In this paper, we discuss the problem of joint motion of interacting quantum and classical 
systems in the process of excitation transfer in a quantum subsystem. 

1. Introduct ion  

In many processes where biopolymers participate there appears a situation 
when the change in the state of the "light" system, i.e. quantum subsystem (elec- 
trons, protons) is accompanied by the motion of heavier particles (of atoms C, O, N 
or globules). This motion is generally described by laws of classic mechanics. More- 
over, the problem of combination of probabilistic description of quantum subsys- 
tem with the Laplace deterministic description of classical system appears. 

In biological systems the main energy source is ATP splitting. It is a pure quan- 
tum process, energy being supplied by discrete portions AE ,,~ 0.4--0.5 eV. Further, 
in a macroscopic system energy is converted into the energy of conformational 
changes. 

In refs. [1-3] a model of muscle contraction based on the hypothesis on the fact 
that at the first stage the energy zSE produces excitation of hydrogen A-H.  •-B 
bonds between atoms A and B which are contained in the myosin head and actin 
filament (fig. 1), is considered. These bonds are weak when interatomic distances 
AB =R1 are comparatively great, but they become stronger and larger-range in 
character provided the proton has been excited co--* el [4]. The resulting force 
f = - 0 c l / O R  makes, according to our hypothesis, atoms AB approach each other 
and actin and myosin filaments slide. 

The work done when approaching from the distance Rl to R2<R1,  i.e. AA 
=~1(R1)-~ l (R2) ,  does not exceed 30% of the excitation energy AE 
= el (R1) - E0(R1) [4]. Therefore in order to explain high muscle contraction effi- 
ciency (up to 80% [5]) the energy residue AlE ----- AE - AA, after the work ~ has 
already been done, is supposed to be transferred to a weaker neighboring hydrogen 
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Fig. 1. The actin globule displacement due to the awing of amyosin head under the action of hydrogen 
bonds A -  H . . .B ,  A-H.  • -B, located near the actin-myosin attachment (A) or hinge (B). 

bond. The process may continue until almost the whole of  the initial energy AE of  
ATP splitting is exhausted. When calculating [6,7] the probability of  excitation 
energy residue transfer from the bond A-H- • -B to the next bond A I - H I .  •. B1 we 
come across the self-conforming problem: the energy transfer takes place in the 
process of classical sliding of polymers and at the same time this mot ion  is caused 
by the f o r c e f  which is essentially of quantum mechanical character. It is obvious 
that the force f is different before and after transition, f l  = - O q / O R  and 
f2 = -Oe2/OR, respectively, where c2 is the excitation energy of  the neighboring 
hydrogen bond A : - H : .  • • B1. The very moment  of  transition is a quantum mechan- 
ical variable. The quantum mechanical mean for the force cannot be used in this 
case, since we are not  interested in the average character of a mot ion of an ensemble 
of solitary pairs of polymers, but in the mot ion of  a single pair. 

We further consider this problem from two different points of  view. First, it 
can be interpreted as a pure quantum problem with subsequent passing to the clas- 
sical limit with respect to a heavy subsystem. Second, as a quantum classical prob- 
lem when a heavy subsystem is supposed to be classical and to be under the action 
ofjumpwise changing force f:  --*f2 but the moment  of a jump is undefined. 

2. Quantum mechanical approach to p r o t o n  and  act in globule  m o t i o n  

2.1. ADIABATIC APPROXIMATION 

The estimates of  probability of  excitation transfer [6,7] from the bond 
A - H . - - B  to the bond A I - H 1 - - - B :  show that the average transfer time 
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7" N 10-12-10 -11 S is shorter by 2-3 orders than the time t ,-- 3 x 10 -9 S required to 
transfer the tractive force from the location of actin-myosin attachment to the z- 
plate ofa sarcomere. Thus, only the last actin globule under the force fo fa  H-bond 
has the time to begin its motion in the period 7-. Hence we now consider only the sys- 
tem consisting of three quantum particles: protons of H-bonds with coordinates 
rl and r2, and actin globule, whose displacement denoted by ~ (see fig. 1). 

The Hamiltonian of this system is 

h 2 
H - 2m (`41 + `42) + Vl (rl, ~) + V2(r2, ~) 

h 2 0 2 
+ V(r12) 2MO~ 2+ U(~), (1) 

where m and M are the masses of protons and of a globule, V1 and V2 are potential 
proton energies parametrically dependent on the globule displacement ~ (the H- 
bond lengths being dependent on it in their turn), V(rl2)  = e2/e~r12 is the proton 
interaction energy, U(~) is the potential energy of the interaction of the given glo- 
bule with neighboring ones, which are not considered to be in motion. 

Due to the strong inequality m < < M  the eigenfunctions and Hamiltonian (1) 
energies can be defined by adiabatic approximation provided proton states are 
determined first: 

gl0(rl, r2, {) = qoll)(rl, {)- ~2)(r2, {), (2) 

Iff01 (?'1, r2, ~) = ~ogl)(rl, ~)" ~Pl 2) (r2, ~), (3) 

where ~Ul0 corresponds to excitation of the first bond when the second bond is not 
excited, ~'ol corresponds to the excitation transfer to the second bond. Here the 
upper indices of~o denote the number of bond, and the lower ones, the level of exci- 
tation. The functions @i) of zero approximation follow from the equation 

~ m A i +  Vi(ri,~) .qoy)(ri)= (i) (i), , - ej ~pj iri), j = 0 , 1 .  (4) 

Taking account of proton interaction V(r12) their states can be found in the 
form of the superposition 

klS' -= C1 (~)" ~lO(r l ,  r2, ~) q- C2(~) • IP'Ol (rl ,  r2, ~) .  (5) 

Then the energy of two protons in this approximation is 

El0 + E01 ,/(El0 - E01 )2 
- 2 ± g ~ + i vlz(~)l  2 , (6) E± 

where 
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ElO ~-- ell)(~) --I- e~2)(~) q_ f ~oV(r12)~lo drl dr2, (7) 

Eo, = e~')(¢) + e12)(~) + f ~/~, V(r,2)~/o, dr, dr2, 

VI2 = f ~;o(rl, r2, () V(rl2)~'Ol (rl, r2, ~) drl dr2. (8) 

Figure 2 shows the dependencies of El0 and E01 (thin lines) and of the energies 
of the first approximation E+ and E_ on (. E+ and E_ represent two branches of the 
adiabatic potential; two wave functions, denoted by ~_ (rl, r2, ~) and ~+ (rl, r2, ~), 
respectively, correspond to them. They differ in coefficients C~: and C2 ~. When the 
motion takes place along the lower branch E_ (() the function ~0_ (rl, r2, ~) describes 
the conversion of the state ~u10(2 ) to ~u01 (3), i.e. excitation transfer to the second 
bond. For the state ¢_ the coefficient Cl (~) changes from 1 to 0, and the coefficient 
C2(~) from 0 to 1 when ~ increases. 

The quantum-mechanical force fl = -OE_/O( ,  acting along the coordinate 
corresponds to the potential E_ ((). 

On the second state of the adiabatic approximation we find the function of a 
heavy subsystem, i.e. coordinates (using Schr6dinger equation 

2 M O ( 2 + U ( ~ ) + E _ ( ( )  "x=E'x, (9) 

~ _ _  r/v,,j t £_ .J 
I 
I 

g g' 

E 
E,o. Co,. 

Fig. 2. Dependence of energies El0 and E m on the coordinate ( of the mutual displacement of 
polymers. 
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where the energy of a light subsystem E_ is a part of the potential energy for a heavy 
subsystem. 

Then the wave function of the system is 

~P = X(~)" ~P-(rl, r2,~) • (10) 

The solution ofeq. (9) can be constructed in quasiclassical approximation, 

x°(¢) bl  exp[ Lp ] 
bE d~'] ~ e x p [ -  p_(~') , (11) 

where 

P_(~) = v /2m(E  - E_(~) - U(~)). (12) 

The analogous solution X+(~) has the form (11) but with substitution of P+(~) 
= v / 2 m ( E -  E+(~) - U(¢)) for P_(~) and other coefficients b~-, b + correspond- 
ingly. 

2.2. DEVIATION OF THE SYSTEM FROM ADIABATICITY 

The approximation considered above can be applied to an extent dependent on 
the fact how much the distance between adiabatic potentials E+ (~) - E_ (~) exceeds 
the matrix element of the operator of non-adiabaticity 

h2 0 ¢' ~ x h2 02 ~ (13) 
[-IuA = - - ~ ' ~  " 2 M  O~ 2 " 

This operator is neglected when we pass from the exact Hamiltonian (1) to 
Hamiltonian (4). Here I~ and Ix shows that the functions ~+ or X± in (10) should be 
differentiable on ~. 

As it is shown in (6) the decomposition of potentials is of the order 21V121. 
According to the estimates in [1], it varies approximately close to 1 meV or a bit 
more. At the same time globule vibration frequencies are ~ 1012 rad/s. Thus they 
are comparable. So, we should take the deviation of the system from adiabaticity 
into account and define eigenfunctions of the Hamiltonian (1) in the form of the 
superposition 

if' = X-(~)f f ' -(rl ,  rE, ~) + X+(~)~+(rl, r2, ~), (14) 

where ~_ and ~+ are in the form of (5), X+ and X- can be found from the system 
resulting after the operation H (1) with ~' (14), multiplication ~*__ and ~+ and inte- 
gration on dr1, dr2 
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2M O~ 2 ~- U(~) + E_ (~) - ~ _ dr2 - E X- (~) 

= _ ~ f  ,0~+ ox+ h 2 ~ ,o~+  
dr2--~-+ f _--ffff-dr, dr2 X+(~) (15) ~P_--~-drl 

× 2 M O ~  2 + U(~) + E÷(~) - ~-~ ~; ar2 - E X+(~) 

=-~ O+--~arl ar2 +-2--M f fz+-~dr,  dr2 x_(~). (16) 

The right-hand sides of these equations correspond to the relations of the non- 
adiabaticity operator and the products X-~-  and X+ff'+. The integral parts on the 
left-hand sides can be considered as corrections with respect to adiabatic potentials 
E± (~). Since the dependence of g'± on ~ is supposed to be weak, we neglect the sec- 
ond derivative with respect to ~ from if'± (rl, r2, ~). 

In the domain of small ~ when E_ is close to E the motion takes place under the 
action of the potential E_ (~) (the first bond is excited). We set that X°+ (~) is equal to 
zero in a zero approximation, X°(~) is in the form of (11), and b~ = 0 since the 
De-Broil wave moves towards increase. In order to define X[ in the first approxi- 
mation, we use the solution X ° on the right-hand side ofeq. (16). By the method of 
coefficients variation, we have 

1. 
We choose the lower limit ~ - A in (11) and (17) in such a manner that the potential 
E_ (() practically coincide with El0(~), and E+ (() with E01 ((). Applying the solution 
ofeq.  (17) to the left-hand side ofeq.  (16) we obtain BI(~) and B2(~) in the form 
of the quadratures 

~ a(~') d~ °_ -g  (as) B1 = ih exp p+(~") d~" d~' 

f~: a(~ ' )dx  0 [ i f~: ] B2 = -ih exp - p+(~") d~" d ( ,  (19) 

where 

f ,0¢~_ a(~) = ~V + --~drl dr2. (20) 
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C~: and C f  are coefficients in the expression for ~P+ (5), defined by the variat ional  
m e t h o d  for the solut ion of  the p rob lem for a light subsystem for arbi trary ~. 

Fur ther  calculat ions of  quanti t ies B1 (~) and B2(~) are shown in [8]. In the expres- 
sion for P+(~) the main  term under  the radical in the domain  of  intersection 
E10(~) and  Em (~) is the full energy E and its order  is that  of  the ATP  splitting. (Here 

+ ,4 is chosen in such a m a n n e r  that  when ~ ~> ~ + At, E_ (~) practically coincide 
with E10(~), the intersection of  E10 (~) and E01 (~) being supposed to take place when 

= ~.) All the other  terms in the formula  (12) have the order  of  energy interact ion 
V(r12), which is small. 

We are interested in the funct ion XI+ only in the domain  ~ f> ~ + At. Its square 
characterizes the probabi l i ty  of  the fact that  excitation remains with the first bond,  
since this funct ion corresponds  to the upper  branch of  the E+ (~). Indeed,  it is neces- 
sary to calculate the following expression: 

D =  A)I2/Ix°( + A)I 2. (21) 

On the contrary,  1 - D is the fact that  the system moves  in acco rdance  with the 
adiabat ic  potent ia l  E_ ((). 

2.3. RESULTS 

Table 1 shows the values of  the matr ix  element  transfer  V12, calculated for differ- 
ent wave funct ions in [6,7]. For  each of  them, the points  are chosen in such a m a n n e r  
tha t  the difference [E10(~) - E m  (~)[ is 41VI2 [ o r  81V121- Moreover ,  El0 differs f rom 
E_ by [V121_/4 or [ Vl21/8, respectively. The m i n i m u m  divergence of  E+ (~) and E_ (~) 
when  ~ = ~ is 21 V12[. Such an approx imat ion  is quite sufficient for the est imates to 
be reliable. In the last two columns the values of  D when ~ -- ~ + A and ~ = ~ + 2A 
are given. Their  compar i son  shows that  the increase in ~ + A does not  influence 
m u c h  the probabi l i ty  of  the system to " leave" the adiabatic  potent ial  E_ ((). The 
probabi l i ty  is ~< 6%. This explains the appl icat ion of  the potent ial  E_ (~) for the clas- 
sical considera t ion of  globule mo t ion  under  the act ion of  the f o r c e s f  = -OE_/O~, 
since our  solut ion X ° (~) corresponds  to the classical approx imat ion  in q u a n t u m  
mechanics .  

Table 1 
The probability to define excitation of the first H-bond D when the parameters of the problem are 
different. 

Matrix element A ~+ A = 4 -  z3 
of transfer [eV / A] [A] 
v12 IcY] 

D(~+ A) D(~+ 2~) 

1.35 × 10 -4  1.35 x 10 -1 3.985 x 10 -3 6.04 × 10 -2 9.627 × 10 -2 
7.77 x 10- 1.276 × 10 -1 2.438 × 10 -2 4.81 x 10 -4  1.321 × 10 -~ 
0.02 1.224 × 10 -1 6.738 x 10 -1 2.246 × 10 -1 1.311 x 10 -2 
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3. Quantum and classical approach to the studies ofact in globule and 
H-bond proton mot ion 

In the methods described above for the determination of stationary states of 
the pure quantum system proton-globules, no time dependencies are included. 
Excitation transfer described by the state ff'-(rl, r2, ~) takes place, so to say, 
"regardless of time". On the other hand, a classical experiment allows to define (by 
the value of globule acceleration) the force really acting on it at the particular 
moment. A somewhat different approach to the same problem corresponds to this 
mental experiment. 

3.1. NONSTATIONARY STATES OF H-BONDS 

At the initial moment t = tl the state of protons is described by ~,10(rl, r2, ~). It 
depends parametrically on the globule displacement ~ (contained in the potentials 
VI (rl, ~), V2 (r2, ~)) and consequently on the time ~ = ~(t). 

The following energy corresponds to it: 

el0(~(t)) = cl 1) (~(t)) + e~2)(~(t)). (22) 

According to [3,4], we can obtain the time dependence of the initial state from the 
nonstationary Schrrdinger equation: 

~Ulo(rl,r2,~(t))exp{-~ f e~o dt} . (23) 

Analogously, after energy transfer we have 

~01(rl,r2,~(t)) exp - ~  e01 dt , (24) 

e01(~(t)) = e(01)(~(t)) + el2)(~(t)) • (25) 

Due to the presence of proton interactions V(r) the process of energy transfer can 
be described by the wave function 

gJ(rx, r2, ~) = C1 (t)U/lo(rl, r2, ((t)) expl . -  ~ 

+ C2(t)~uol(rl,r2,~(t))exp{-~ f ~o, dt} . (26) 

Coefficients C1 and C2 are defined by the equations 

ihC1 = Vx2(~)C2(t)exp -h (¢510 - -  e01) dt , 
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i - at} ihc2= v21(e)c,(t)exp(--~/(~lo ~o~) . (27) 

Approximating el0 and col by parabolas having identical curvature c~', we have 

! 

~oi = ~o°1 + ~- (R2 - R2) ~ , (28) 

where RI, R2 -H-bond lengths, kl and R2, correspond to the minima of energies 
e°0 and e0°1. As it is shown in fig. I H-bond lengths can be expressed by the globule 
displacement ~(t) or by the angle of myosin head swing ~ = eft, where I is the length 
of the head. 

At the initial moment  the head is in a vertical position, the lengths of  bonds being 
R ° and R~, then 

R 1 --  R 0 _ R 2 - R~ 

qo -- hi h2 ' 

where hl and ha are the arms of  tractive forces./] and f2 of  H-bonds. Therefore, 

~10 = ~IO0 ÷ - 2 -  R 1 0 - / ~ 1  - h i  7 , 

~'( ~)2 
e01 = e~  + ~-  R2 - R2 - h2 ? . (29) 

Assuming that  the difference h2 - hi is small in comparison with the values of  hi 
and h2, we rewrite (29) in the form 

~10 = ~ioo + ~- (ll - 
~)2,  

1501 =~01 ÷2(/2--~) 2, (30) 

where 

C~ = c~' , li = ( R  - R i  , i = 1 , 2 .  

In this approximation,  the subintegral function in eq. (27) is nonlinear with respect 
to ~. Since the average time of  energy excitation is small, the change ~(t) on this 
interval does not  differ much from the linear case. We neglect this difference in a 
zero approximation.  

It is convenient to choose the moment  of  the first H-bond excitation as the start- 
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ing time t, and to denote by ~ the moment of intersection of potentials el0 and e01. 
The corresponding globule displacement ((t) is denoted by (. From (30), it is equal 
to 

l [ 2 ( 1 2 - 1 2 ) + ( e ° l - e ° o )  j . (31) 
- -  6(/2 --- lx) 

Assuming that the time interval required, according to eq. (27), for the excitation 
transfer to take place, is sufficiently small and that the change in the velocity of glo- 
bule motion is also small during this time, we can write 

~(t) = ~ +  ~(~)(t-  7), (32) 

where t - t~< At. Then, 

h f (elO - eol)dt = 6L(12 - ll) / t ~ ( t ) ( t  - t') dt 

= _6 (/2 - ll)~(t)(t - t)2/2. 
h 

To simplify 
eqs. (27) and (33) to be equal to L 

Applying (33) to the exponents ofeq. (27), we obtain 

• dC1 = g C 2 ( T ) e i T  2 
l-'d- ~ 

• dC2 = g. C1 (T)e -iT2 
t--d- ~- 

where, according to (33), dimensionless time T is introduced: 

T = ( t -  7);6~(12~ ll) ~(~) = B ( t -  ,) , 

and dimensionless parameter g is introduced too: 

v Vl2 v12 

~/h6~(12 - ll)~(7) Bh 

Excluding C1 from eq. (34), we have 

d2C2 dC2 
dT 2 + 2iT--d--~-+ IglaCa = O. 

our calculations we suppose the lower limits of integration in 

(33) 

(34) 

(35) 

(36) 

(37) 
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This equation is even with respect to the substitution of - T  for T. Thus there 
must exist two solutions C2 (T), even and odd with respect to T. We set 

C2(T) = (A+ U+(x) + A_ U_(x))e -ix , (38) 

where x = T2/2. For U+ (x), the equation will be 

d E U + l d U + (  ~ x  t) 
d x  2 k-2x~-x + l +  U + = 0 .  (39) 

The odd solution is written as follows: 

U_ = v'x v(x) = --~2v(x), (40) 

then 

dEv 3 dv ( g 2 - i) 
dx---2+~xx~x+ 1 + ~  v = 0 .  (41) 

The series for U+(x), as well for V(x), begins with 1. These solutions are 
o o  o o  

U+(x) Z Unx~' U_(x) = v/-XZv,,x " , (42) 
n=0 n=0 

where 

Uo= l, Ul = i - g ~ ,  U,= n(n-1/2) U,,-2+ U,,-1 , (43) 

i - g  2 
V 0 = l ,  V I - - - ,  

3 

V, = n(n+ 1/2) v,,-2+ v~-i , n~>2. (44) 

The constants A+, A_ are defined from initial conditions. Suppose when t = 0 
we have the first bond excited a for t io r i ,  and Cl(t = O)= 1, C2(t = O)= O, 
respectively. 

3.2. CLASSICAL DESCRIPTION OF GLOBULE MOTION 

The classical motion when t > 0 is described by the system of equations [2,3] for 
N globules 

M--~-= a(~n+l +~,,-1 -2~n) ,  0 < n < N -  1, (45) 

where ~. is the displacement of the nth globule and a is the coefficient ofquasielastic 
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forces acting among globules. In this equation the displacements ~n are counted 
off from the globule equilibrium positions when the H-bond is not  excited. For  the 
last Nth  globule the displacement ~N must  be used in the preceding formulas instead 
of  ~(t). The Nth globule displacement takes place due to the myosin head swing 
by hydrogen bonds (fig. 1). It is under the action of  the horizontal component  F of  
the H-bond fo rce f  and, according to [2,3], the equation of  this globule mot ion  is 

m ~  = O~(~N-1 --  ~N) Jr" F .  (46) 

If  we add the equation which describes the rotation of  the head around the hinge, 
the unknown force F can be excluded [2,3]. This results in the equation 

( ' )  (47) 

where f l ,  according to (30), is given by 

0el0 _ c~ 1 (ll - ~N) (48) A -  ' 

J is the moment  of myosin head inertia and K is the coefficient of  quasielastic force 
that returns the head back to its natural vertical position. 

We now introduce a coordinate x = na, where a is a globule size into the approx- 
imation of  continuous elastic filament. Then we fix the linear density p = M/a ,  
the velocity of  stretching wave c = X/r~-@p, and the length of actin filament 
L = Na, and pass to the limit a---~ 0, M--~0, N---~ oo. Hence (n = ((t) and eq. (45) 
becomes a partial equation, and owing to the approximation 

~. - ~._1 ~ a~x  x ~n+l -J- ~n-1 --  2~n a- a 2 C ' ~  ...... Ox 2 

,bt 2 = c 2 (49) COX 2 

eq. (47) will be expressed in the form of a boundary condition, 

( ) 1 J + 0a~ 0~+ 1_~ ~ +  ~=  ll (50) 

when x = L. In this case, p and c are finite and therefore a --+ cxz as 1/a. The term 
proport ional  to the acceleration can be neglected. Thus eq. (49) is reduced the 
boundary condition 

O---x pc 2 - ~  ll , w h e n x = L .  (51) 
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The solut ion of  eq. (49) satisfies the condi t ion (51) (as well as condi t ions  ( = 0, 
= 0, when  x = 0) and is as follows: 

N 

~(x,t) = Bx + E As sinks x cos(wd + as) ,  (52) 
s = l  

where ws = cks; the wave number  ks and the constant  B follow f rom (51), which 
yields the equat ion  

tgksL pc 2 
ksL - (a + x / t ) L  = (53) 

B - pc1( 1 + e) " (54) 

Moreover ,  the funct ions s inksx and s i n ~ x  when ks ¢-/d s are o r thogona l  in the 
interval 0 ~< x ~< L and  

sinks x sinU, x dx = 6se -~ 1 -~ 1 + (eksL) 2 

Coefficients As are defined f rom the initial conditions.  When  t = 0, the first bond  
becomes excited, globules are motionless ,  then ~(0, x) = 4(0, x) = 0 for all x, i.e. 

N 

Bx + E As sin ks x cos a ,  = 0,  (55) 
s = l  

N 

Z A~ws s ink ,  x sin as = 0.  (56) 
s=  1 

Hence f rom (56) it follows that  as = 0. Mult iplying bo th  parts  of  eq. (55) by 
sin/d,x and  integrat ing with respect to x within the limits 0, L, we obta in  

As = 2BL(-1)s  (1 + e)V/1 + (&sL) 2 (57) 

ksL [1 + e + (eksL) 21 

Then  the solut ion of  the system of  equat ions  (49) and (51), when x = L, is 

~(L,t) = BL 1 - 2 e ( l + e ) Z  l + e + ( e k s L ) 2  . 
s = l  

W h e n  t = ~ we have 

N 

= 8 L  + as  sink/ cos( s ). 
s = l  
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Hence the equation for t determination is 

- B L  /v cos wfi (59) 
2BLe(1 + e) = - Zs=_l 1 + ,  + (eksL) 2" 

This equation can be solved numerically when some parameters ~, 11, 12, e°0, e°l 
are reasonably chosen. From (58) it follows that 

N 
~(L,~) = - ~ A~sink ,  L w, sinwfi 

s =  I 

S ksL sin wfi (60) 
= 2Bce(1 + e ) ~ l  + e +  (eksL) 2" 

s = l  

This variable defines the parameter g (36) and consequently the solution for 
C1 (T) and C2 (T) in the form of (38)-(44) or of the linear combination of degenerate 
hypergeometric functions [7] (asymptotic solutions). Figure 3 shows the results of 
tabulation of coefficients. It also shows dependencies of CI(T)  and C2(T) when 
g = 1. It implies the probability of the fact that excitation transfer occurs in a small 
interval of time f ~ f + dr, 

d 
W(t ' ) t  = ~  IC2(t')12dt ' -- B[C2(T)C~(T) 

+ C~(T)C2(T)]d{ = W ( T ) d T ,  (61) 

where T = B(t  - ~). (71 and C2 can be expressed using eqs. (34). Figure 4 shows 
the dependence W ( T ) .  

3.3. GLOBULE MOTION DURING THE EXCITATION TRANSFER 

Up to the moment f the motion of globules correspond to the solution of (58), 

-q -7 0 q T 

Fig. 3. Time dependences of I C1 (T)12 and [ C2 (T)[ 2 when g = 1. 
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Fig. 4. Dependence of W(T). 

and after it, when t > t ~, to the analogous solution for which the dependence (58) is 
the initial condition. It is of the form 

N 

~(x,t) = B~x + Z A~ssinks x cos(wst +/3~). (62) 
s = l  

From the boundary condition (51) it follows that 

B' - ~12~ 
pc2(1 + e) ' (63) 

where e correspond to (53). 
As and ~s are determined from the initial conditions, when t = t', 

N N 

Bx + Z Assinks x coswJ = f ix  + Z A', sinks x cos(wJ +/3s), (64) 
s=l s=l 

N N 

Z Aswssinks x sinws{ = Z Wswssinks x sin(w,t +/3s). 
s=l s=l 

(65) 

Hence 

sin wst I (66) 
A' s = As sin(wst +/3s) " 

Then applying A~s (66) to eq. (64), multiplying both of its parts by sin ksx and 
integrating on dx from 0 up to L, we find 
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( /3s = - w d '  + arctg b + cos wsf , I  ' 

where b = f f  / B  - 1 = 12/ll - 1. 
Hence the solution, when t >~ t', has the form 

N sin ws f 
/2 _ 2e(1 + e) Z [  1 

(eksL) 2] + + 

cos(ws(t - f) + arctg as) ] 
× ~-n-(a~ctg a-~ J ' 

where 

(67) 

(68) 

sinwsf 
as 12/ll - l + c o s w s f  

Figure 5 shows the dependence ~(L, t); curve 1 corresponds to the globule motion 
under the forcefl = --Oelo/O~N of the first hydrogen bond, curves 2, 3 and 4 corre- 
spond to the motion, when excitation has transferred to the second bond under 
the forcer2 = -0e01/O~N. Depending on our choice with respect to f, we obtain dif- 
ferent trajectories: the moment f is the beginning of the motion under f2. Different 
experiments give different trajectories with probability W ( t ' ) ,  depending on the 
values of f for excitation transfer (curves 2, 3, 4). 

96,5 

1,2÷ 

e,8 

Q,'i t e4tg,  Io:8  r 

Q,4 

t / , 

! ' 

I t , 
/ 

- / 

_ / 
i 

Fig. 5. Time dependences of the displacement of the polymer under the action of the forcefi when 
the first H-bond is excited (curve 1). Curves 2, 3 and 4 correspond to the motion when excitation has 
already been transferred to the second H-bond under the action of the force f2, the values of t' being 

different (r  = 27r/wl is the period corresponding to the smallest of  frequences). 
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4. D i s c u s s i o n  

The comparison of two theories shows that they presuppose different characters 
of globule motion. In the first case, they move under the action of the average 
potential E_((), so to say, and the f o r c e f  = -OE_/O(. In the second case, they 
move under the action of a jumpwise changing force from fl to f2 and the moment 
of this jump f is undefinite. Thus the questions arise: How do globules actually 
move? What is the truth? Such a paradox resembles the "Schr6dinger cats" [9]. 

The solution is based on the assumption that the g/function is the record of 
data on the state of the system. If the system with coordinates rl, r2, ~ is isolated, 
then the function ~ changes according to the Schr6dinger equation. 

This corresponds to the pure quantum version of the theory-  the motion is along 
the trajectory of the potential E_ ((), and finally we can observe the states ~'2 and 
g/1 with probabilities 95% and 5°,/0, respectively. The moment { of quantum transi- 
tion is excluded. 

In the case of the mixed quantum and classical description, we observe accelera- 
tion of globules. Each time a cognitive operation takes place and each time it estab- 
lishes that we have potentials el or e2. This also gives the moment f of excitation 
transfer, which is different in different experiments. 

With probability 5%, calculated earlier, we observe trajectory 1 under the action 
of the force jq up to the end, and with probability 95% transitions into the trajec- 
tories 2, 3, 4. 

Both of our approaches correspond to different statements of an experiment. 
In the first case, we observe only the starting and finite moments of the motion (e.g. 
acceleration of globules). In the second case, the observation is supposed to be con- 
tinuous and the experiment gives, each time, additional information on the state 
of the motion of the globule system. This allows to define the moment f of excita- 
tion transfer by practice. The case is similar to that of observation of radioactive 
splitting (e.g. using a Geiger counter). The probability of splitting is given by the 
law e -t /r .  At the same time each experiment allows to define the actual moment of 
splitting, which is different under different observations. Moreover, this actual 
moment f of decay can vary from a fraction of a second up to milliards of years. 
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